1,976 research outputs found

    New perspectives on the Popigai impact structure

    Get PDF
    The record of large-scale cratering on Earth is scant, and the only currently 'proven' 100-km-class impact structure known to have formed within the Cenozoic is Popigai, located in the Siberian Arctic at 71.5 deg N, 111 deg E. Popigai is clearly a multiringed impact basin formed within the crystalline shield rocks (Anabar) and platform sediments of the Siberian taiga, and estimates of the volume of preserved impact melt typically exceed 1700 cu km, which is within a factor of 2-3 of what would be predicted using scaling relationships. We present the preliminary results of an analysis of the present-day topography of the Popigai structure, together with refined absolute age estimates, in order to reconstruct the pre-erosional morphology of the basin, as well as to quantify the erosion or sediment infill rates in the Popigai region

    A Mars orbital laser altimeter for rover trafficability: Instrument concept and science potential

    Get PDF
    Limited information on the types of geologic hazards (boulders, troughs, craters etc.) that will affect rover trafficability on Mars are available for the two Viking Lander sites, and there are no prospects for increasing this knowledge base in the near future. None of the instrument payloads on the upcoming Mars Observer or Soviet PHOBOS missions can directly measure surface obstacles on the scales of concern for rover safety (a few meters). Candidate instruments for the Soviet Mars 92 orbiter/balloon/rover mission such as balloon-borne stereo imaging, rover panoramic imaging, and orbital synthetic aperature imaging (SAR) are under discussion, but data from this mission may not be available for target areas of interest for the U.S. Mars Rover Sample Return (MRSR) mission. In an effort to determine how to directly measure the topography of surface obstacles that could affect rover trafficability on Mars, we are studying how to design a laser altimeter with extremely high spatial and vertical resolution that would be suitable for a future Mars Orbiter spacecraft (MRSR precursor or MRSR orbiter). This report discusses some of the design issues associated with such an instrument, gives examples of laser altimeter data collected for Mars analog terrains on Earth, and outlines the scientific potential of data that could be obtained with the system

    Lunar Observer Laser Altimeter observations for lunar base site selection

    Get PDF
    One of the critical datasets for optimal selection of future lunar landing sites is local- to regional-scale topography. Lunar base site selection will require such data for both engineering and scientific operations purposes. The Lunar Geoscience Orbiter or Lunar Observer is the ideal precursory science mission from which to obtain this required information. We suggest that a simple laser altimeter instrument could be employed to measure local-scale slopes, heights, and depths of lunar surface features important to lunar base planning and design. For this reason, we have designed and are currently constructing a breadboard of a Lunar Observer Laser Altimeter (LOLA) instrument capable of acquiring contiguous-footprint topographic profiles with both 30-m and 300-m along-track resolution. This instrument meets all the severe weight, power, size, and data rate limitations imposed by Observer-class spacecraft. In addition, LOLA would be capable of measuring the within-footprint vertical roughness of the lunar surface, and the 1.06-micron relative surface reflectivity at normal incidence. We have used airborne laser altimeter data for a few representative lunar analog landforms to simulate and analyze LOLA performance in a 100-km lunar orbit. We demonstrate that this system in its highest resolution mode (30-m diameter footprints) would quantify the topography of all but the very smallest lunar landforms. At its global mapping resolution (300-m diameter footprints), LOLA would establish the topographic context for lunar landing site selection by providing the basis for constructing a 1-2 km spatial resolution global, geodetic topographic grid that would contain a high density of observations (e.g., approximately 1000 observations per each 1 deg by 1 deg cell at the lunar equator). The high spatial and vertical resolution measurements made with a LOLA-class instrument on a precursory Lunar Observer would be highly synergistic with high-resolution imaging datasets, and will allow for direct quantification of critical slopes, heights, and depths of features visible in images of potential lunar base sites

    Search for the 700,000-year-old source crater of the Australasian tektite strewn field

    Get PDF
    Many tektite investigations have hypothesized that the impact crater that was the source of the extensive Australasian strewn field lies somewhere in or near Indochina. This is due to variations in abundance and size of tektites across the strewn field, variation of thickness of microtektite layers in ocean cores, nature and ablation characteristics across the field, and, above all, the occurrence of the large, blocky, layered Muong Nong-type tektites in Indochina. A recent study of the location and chemistry of Muong Nong-type and splash-form tektites suggests that the source region can be further narrowed to a limited area in eastern Thailand and southern Loas. Satellite multispectral imagery, a digital elevation dataset, and maps showing drainage patterns were used to search within this area for possible anomalous features that may be large degraded impact craters. Four interesting structures were identified from these datasets, and they are presented

    The Zhamanshin impact feature: A new class of complex crater?

    Get PDF
    The record of 10-km-scale impact events of Quaternary age includes only two 'proven' impact structures: the Zhamanshin Impact Feature (ZIF) and the Bosumtwi Impact Crater (BIC). What makes these impact landforms interesting from the standpoint of recent Earth history is their almost total lack of morphologic similarity, in spite of similar absolute ages and dimensions. The BIC resembles pristine complex craters on the Moon to first order (i.e., 'U'-shaped topographic cross section with preserved rim), while the ZIF displays virtually none of the typical morphologic elements of a 13- to 14-km-diameter complex crater. Indeed, this apparent lack of a craterlike surficial topographic expression initially led Soviet geologists to conclude that the structure was only 5.5 to 6 km in diameter and at least 4.5 Ma in age. However, more recent drilling and geophysical observations at the ZIF have indicated that its pre-erosional diameter is at least 13.5 km, and that its age is most probably 0.87 Ma. Why the present topographic expression of a 13.5-km complex impact crater less than 1 m.y. old most closely resembles heavily degraded Mesozoic shield craters such as Lappajarvi is a question of considerable debate. Hypotheses for the lack of a clearly defined craterlike form at the ZIF include a highly oblique impact, a low-strength 'cometary' projectile, weak or water-saturated target materials, and anomalous erosion patterns. The problem remains unresolved because typical erosion rates within the arid sedimentary platform environment of central Kazakhstan in which the ZIF is located are typically low; it would require at least a factor of 10 greater erosion at the ZIF in order to degrade the near-rim ejecta typical of a 13.5-km complex crater by hundreds of meters in only 0.87 Ma, and to partially infill an inner cavity with 27 cu km (an equivalent uniform thickness of infill of 166 m). Our analysis of the degree of erosion and infill at the ZIF calls for rates in the 0.19 to 0.38 mm/yr range over the lifetime of the landform, which are a factor of 10 to 20 in excess of typical rates for the Kazakhstan semidesert

    Analysis of radar images of the active volcanic zone at Krafla, Iceland: The effects of look azimuth biasing

    Get PDF
    The geomorphic expression of Mid-Ocean-Ridge (MOR) volcanism in a subaerial setting occurs uniquely on Earth in Iceland, and the most recent MOR eruptive activity has been concentrated in the Northeastern Volcanic Zone in an area known as Krafla. Within the Krafla region are many of the key morphologic elements of MOR-related basaltic volcanism, as well as volcanic explosion craters, subglacial lava shields, tectonic fissure swarms known as gjar, and basaltic-andesite flows with well developed ogives (pressure-ridges). The objective was to quantify the degree to which the basic volcanic and structural features can be mapped from directional SAR imagery as a function of the look azimuth. To accomplish this, the current expression of volcanic and tectonic constructs was independently mapped within the Krafla region on the E, W, and N-looking SAR images, as well as from SPOT Panchromatic imagery acquired in 1987. The initial observations of the E, W, and N images indicates that fresh a'a lava surfaces are extremely radar bright (rough at 3 cm to meter scales) independent of look direction; this suggests that these flows do not have strong flow direction related structures at meter and cm scales, which is consistent with typical Icelandic a'a lava surfaces in general. The basic impression from a preliminary analysis of the effects of look azimuth biasing on interpretation of the geology of an active MOR volcanic zone is that up to 30 percent of the diagnostic features can be missed at any given look direction, but that having two orthogonal look direction images is probably sufficient to prevent gross misinterpretation

    K/T age for the popigai impact event

    Get PDF
    The multi-ringed POPIGAI structure, with an outer ring diameter of over 100 km, is the largest impact feature currently recognized on Earth with an Phanerozoic age. The target rocks in this relatively unglaciated region consist of upper Proterozoic through Mesozoic platform sediments and igneous rocks overlying Precambrian crystalline basement. The reported absolute age of the Popigai impact event ranges from 30.5 to 39 Ma. With the intent of refining this age estimate, a melt-breccia (suevite) sample from the inner regions of the Popigai structure was prepared for total fusion and step-wise heating Ar-40/Ar-39 analysis. Although the total fusion and step-heating experiments suggest some degree of age heterogeneity, the recurring theme is an age of around 64 to 66 Ma

    The Effective Potential Energy Surfaces of the Nonadiabatic Collision B(\u3csup\u3e2\u3c/sup\u3eP\u3csub\u3ej\u3c/sub\u3e\u3csub\u3ea\u3c/sub\u3e) + H\u3csub\u3e2\u3c/sub\u3e(\u3csup\u3e1\u3c/sup\u3eΣ\u3csup\u3e+\u3c/sup\u3e\u3csub\u3eg\u3c/sub\u3e,ν,j) ↔ B(\u3csup\u3e2\u3c/sup\u3eP\u3csub\u3ej\u27\u3c/sub\u3e\u3csub\u3ea\u3c/sub\u3e) + H\u3csub\u3e2\u3c/sub\u3e(\u3csup\u3e1\u3c/sup\u3eΣ\u3csup\u3e+\u3c/sup\u3e\u3csub\u3eg\u3c/sub\u3e,ν\u27,j\u27)

    Get PDF
    Effective potential energy surfaces (PESs) are calculated for a nonadiabatic collision . This calculation employed 1 2A\u27, 2 2A\u27 and 1 2A adiabatic PESs numerically calculated at the state-averaged multiconfigurational self-consistent field (SA-MCSCF)/configuration interaction (CI) level for several values of the H2 bond length, H2 orientation angle, and boron distance. The associated nonadiabatic coupling terms (NACTs) were calculated from the SA-MCSCF/CI wave functions using analytic gradient techniques. A line integral through the NACTs was then used to determine the adiabatic-to-diabatic mixing angle required to transform from the 1 2A\u27 and 2 2A\u27 adiabatic basis to a corresponding diabatic basis. When all nonadiabatic coupling terms between all electronic states are considered, the line integral is path independent. However, only NACTs between the 1 2A\u27 and 2 2A\u27 states were considered in these calculations, and the line integral was therefore path dependent. The path dependence of the line integral was used to characterize the error introduced by employing a truncated set of adiabatic states. A method for reducing the effect of this error through the use of symmetry derived boundary conditions was developed. The resulting diabatic PESs were combined with the total B + H2 rotational kinetic energy and boron spin-orbit coupling to yield diabatic effective PESs. The diabatic effective PESs were diagonalized to yield adiabatic effective PESs. Diabatic effective PESs data was extracted for the equilibrium H2 bond length and used to calculate inelastic scattering matrix elements using the time dependent channel packet method

    Increasing the salience of NRM Research with innovative methodologies: The example of oriented qualitative case study (OQCS)

    Get PDF
    Recent approaches in natural resource management emphasize decision makers' need for research that (1) encompasses a landscape or regional scale, (2) uses multiple scales of analysis, and (3) has a relatively timely research process. This article presents a novel qualitative research methodology that seeks to increase research salience (relevance) for decision makers in natural resource management agencies by taking steps toward meeting these needs. Called oriented qualitative case study (OCQS), the methodology was used to examine how and why landholders changed their land uses and livelihoods during a forest transition in northwest Costa Rica. In order to better meet the three needs listed above this methodology makes a necessary, partial trade-off in the depth of knowledge it generates at smaller scales. In addition to using such novel methodologies, ongoing engagement between researchers, decision makers and other stakeholders is also critical for increasing salience
    corecore